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Synopsis 

It is necessary to establish a relationship between Young’s modulus and density for a closed-cell 
plastic foam in order to predict the flexural stiffness properties of integral skinned foamed ther- 
moplastics. It has been shown experimentally that there exists a square-power relationship between 
modulus and density for high-density closed-cell thermoplastic foams, but this has not been confirmed 
by existing theoretical models for foams. These models are reviewed and finite element analyses 
of “circular hole in square plate” and “spherical hole in solid cube” models are presented which give 
close agreement with the empirical results. 

INTRODUCTION 

Integral skinned foamed thermoplastics called “structural foams” and 
“sandwich moldings” are widely used because they provide good bending stiffness 
properties for low weight and cost. In order to predict their flexural stiffness 
properties, it is necessary to establish a relationship between modulus and density 
for their foamed core. Their morphology is more complicated than most con- 
structed sandwich materials because densities are not uniform within a molding 
but vary from a value of nearly unity relative to the density of solid material near 
the outside of the molding to around 0.3 in the center layers. It is necessary, 
therefore, to treat the core either in some average way or to take account of the 
varying density and modulus. In both cases a basic relationship between 
modulus and density is required. 

It is not easy to establish reliable experimental values for foam modulus, be- 
cause of the complex nature of these materials and the effect of the molding 
process on the properties. Two independent sources1’2 give empirical rela- 
tionships between modulus and density for a high-density foamed thermoplastic 
which approximate very closely to a square-power relationship: 

EfIE, = ( P ~ / P ,  )2 

where E f  and E, are the Young’s moduli of foamed and solid materials, respec- 
tively; and p f  and ps are the respective densities. 

Several theoretical models have been developed to describe the mechanical 
behavior of foams, but they do not predict accurately the empirical relationship 
given above. These models are reviewed in this paper and a finite element 
analysis by the authors is described which gives values close to the experimental 
results. 
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REVIEW OF THEORETICAL MODELS 

Law of Mixtures Model 

This model assumes that the modulus of the foamed material is in direct 
proportion to the moduli of the component materials (solid thermoplastic and 
air) and their relative content by volume. Thus, 

Ej = nE, + (1 - n)Es 

where f, s, and a represent the foamed plastic, solid plastic, and air, respectively; 
and n is the volume fraction of air (0 < n < 1). Taking E, = 0 and n = 1 - pj /ps  
then 

f = 1 - n =  E 
ES Ps 

This relationship is shown in Figure 3. 

Strength of Materials Models 

These models assume uniform elastic deformation of an idealized element of 
a homogeneous foam structure. 

Square in Square 

A repeated element is assumed to comprise a square hole (side length h )  cut 
out of a square plate (side length H )  of unit thickness, as shown in Figure 1. An 
applied axial load F is assumed to be uniformly distributed and to cause a uni- 
form linear elastic deformation e (i.e., stress concentration effects are ignored). 
Applying Hooke’s law to the whole element, 

F H  e = - -  
H E f  

in terms of solid material alone, 
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Eliminating F/e gives 

E 1 - ( h / H )  f =  
E,  

But h2 /H2  = volume fraction of void, n (= 1 - p f / p , ) .  Therefore, 
1 - ( h / H )  + ( h 2 / H 2 )  

E 1 - n 1 / 2  
A =  
E, 1 - n n l 2 + n  

Cube in Cube 

This is a logical extension to the model above. I t  considers the uniform uni- 
axial deformation of a cubic element (side length H )  containing a central cubic 
void (side length h). A similar analysis gives the following relationship: 

1 - n2 /3  h3 
where n=-= 1 -!?L 

E f =  
E, 1 - n 2 j 3 + n  H 3  Ps 

Modified Cube i n  Cube 

Two “cube in cube” elements adjacent in the direction of loading are shown 
in Figure 2. If the foamed plastic comprises sets of “cube in cube” elements in 
series, it is not unreasonable to assume that the sections between the voids (shown 
hatched in Fig. 2) are not load bearing. If such regions are ignored, then 

t ‘  

if 
Fig. 2. Modified cube-in-cube model. 
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Mackenzie and Kerner Models 
These models comprise a spherical void (Mackenzie3) or nonreinforcing grain 

(Kerner4) encapsulated in a spherical shell of matrix material which itself is 
encapsulated in a spherical shell of a homogeneous material having average 
properties. An elasticity analysis for hydrostatic loading was performed to give 
values of bulk and shear modulus. 

Kerner’s analysis, when interpreted for an airlsolid system, gives the following 
expressions for shear modulus G and bulk modulus K :  

G,(1 - n)/15(1 - v,)  Gf = 
n/(7 - 5v,) + (1 - n)/15(1 - v,) 

KunI(3Ku + 4G,) + K,(1 - n)/(3Ks + 4G,) 
n(3K, + 4G,) + (1 - n)/(3KS + 4G,) K f  = 

where v, is Poisson’s ratio for the solid material. 

tween elastic constants for an isotropic material, 
Baxter and Jones5 have combined the above equations with the relations be- 

E = 3K(1 - 2 ~ )  = 2G(1 + Y) 
to produce a relationship between Young’s modulus and volume fraction of air 
n. This is plotted in the form EfIE, against pf lp,  in Figure 4. 

Rusch6 derived the same result independently; he also manipulated 
Mackenzie’s analysis to give a similar relationship (shown in Fig. 4), having made 
subsidiary assumptions to prevent physically meaningless results. 

Lederman Model 
Lederman7 developed a theory by Gent and Thomass which assumed the foam 

to comprise intersecting thin threads forming a lattice structure with nonde- 
forming globules at the junction points. 

Stress analysis of this model gives the following expression for modulus ratio 
when vf  = 0.25: 

A=- E B2 
E, l+B 
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Fig. 3. Comparison of theoretical models. 
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Fig. 4. Comparison of theoretical models. 

where N is’a structural parameter (equals unity for an isotropic material) and 
B is a geometric parameter related to N and the density ratio pflp,. This theory 
was specifically intended for low-density open-cell foams, and direct calculation 
of B for high densities gives values of EfIE, greater than unity. It is possible 
(though perhaps questionable) to apply the condition that EfIE, = 1 when pf lp,  
= 1. This gives a limiting value of B (equal to 2.732 for N equal to unity). Values 
of B for other densities can then be interpolated graphically ignoring the 
mathematical relationship between B and density ratio for values of the latter 
above 0.5. The modulusldensity relationship shown in Figure 4 was plotted on 
this basis. 

Mehta-Columbo Model 

This analysis9 is based on a model by Halpin and TsailO for anisotropic com- 
posite materials. For a composite containing solid polymer and air, Mehta and 
Columbo derived the relationship 

f =  E P f l P s  
E, 

where z is a constant related to cell size and orientation. For spherical air cells, 
z equals 0.5. The modulusldensity relationship for this case is shown in Figure 
5. Also shown are the corresponding relationships with z having values 0.4 and 
0.6. These show the extent to which the model is influenced by this factor. 

1 + [I - ( P ~ / P , ) ] / z  

COMPARISON OF MODELS 

All the models described contain simplifying assumptions of structure and 
homogeneity that are clearly not borne out in practice. Their validity must be 
judged, at  least partially, in terms of how closely they predict the experimental 
square-power relationship between relative modulus and density. 

As shown in Figure 3, the “law of mixtures” and “strength of materials” ap- 
proaches are clearly inadequate. The Mackenzie and Kerner models (Fig. 4) 
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Fig. 5. Mehta-Columbo model. 

are better, but they still overestimate the stiffness of foamed mateFia1 and are 
in error by about 40% at  a density ratio of 0.5. 

Lederman’s model can be interpreted to give an excellent prediction of the 
empirical curve, as shown in Figure 4. Its validity though must be in question 
because it assumes an open-cell structure which is manifestly untrue for high 
relative densities. Also, the geometric parameter has to be adjusted in order 
to prevent meaningless results a t  these high densities. 

The Mehta-Columbo model gives reasonable agreement with practice. The 
predicted modulus-versus-density relationship has however a different shape 
to the empirical one (whatever value of the adjustable structural parameter is 
chosen) so that errors a t  either high or low densities are inevitable. 

FINITE ELEMENT APPROACH 

The finite element techniquell provides a numerical method of stress analysis. 
An approximate solution to a continuum problem with a complex stress distri- 
bution is obtained by idealizing the structure was an assembly of interconnected 
elements. Within each element a simplified displacement distribution is as- 
sumed. In the analysis used by the authors, plane triangular elements having 
a linear displacement distribution (and therefore constant strain and stress) were 
used. With the finite element method it is possible to analyze models similar 
to the “strength of materials” models described earlier, without having to assume 
a greatly simplified stress distribution. 

It is assumed, in company with most other models of foamed plastics, that the 
foam structure is uniform and homogeneous. Although this is not implicit in 
the finite-element method, the solid-material phase was assumed to be isotropic 
and linearly elastic. Also, because of limitations in the computer programs 
available to the authors, only two-dimensional models were analyzed, though 
it proved possible to extend these to three dimensions as described later. 

The finite-element meshes shown in Figures 6 and 11 represent the smallest 
repeating unit in a model foam structure for which the boundary conditions can 
be easily defined. For both these meshes the straight portions of all four 
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boundaries must, after deformation due to uniaxial loading, remain straight and 
parallel to their initial directions. 

The mesh shown in Figure 6 enabled a “circular hole in square plate” model 
of unit thickness to be analyzed in plane stress. The element configuration and 
numbering allowed the hole to be increased in size by the removal of rings of el- 
ements. 

A uniform displacement was applied normal to the upper boundary of the 
mesh, and all four straight boundaries were thereafter constrained to move only 
in their initial directions. Constraining the side boundaries in this way intro- 
duces biaxial loading, but tests showed that it made negligible difference to the 
ratio of stiffness between foamed and solid materials, providing the same 
boundary conditions were applied when considering the solid material alone. 
The resultant stresses along the displaced edge were plotted for different hole 
sizes, as shown in Figure 7. The area under each of these curves gives the total 
force required to uniformly displace the upper boundary. This is proportional 
to the stiffness of the “model,” which in turn is proportional to the modulus of 
the foamed material E f .  The stiffness of an identically dimensioned cuboid of 
solid material with the same boundary conditions was calculated to be 3530 
N/mm. Hence, ratios equivalent to modulus ratios were obtained. The density 
ratios pr /ps  were calculated by simple geometry. As shown in Figure 8, this gives 
a good approximation to the empirical square-power relationship despite the 
assumptions made. 

It is possible to simulate a three-dimensional spherical void in solid-cube model 
using the two-dimensional mesh described above. The mesh was reanalyzed 
as before but under conditions of plane strain. Hence, a graphic relationship 
between hole size and force required for uniform axial displacement was obtained. 

Fig. 6. Circular hole in square plate mesh. 
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Fig. 7. Stress distribution along displaced boundary. 

A sphere in a cube can be approximated by a series of thin (two-dimensional) 
square slices containing circular holes of average diameter, as shown in Figure 
9. Neglecting interactions between these slices, a set of plane “circular hole in 
square plate” models is equivalent to a “spherical hole in cube” model which is 
uniaxial4y deformed, with its four sides constrained to move only in their initial 
planes. Summation of the forces for each slice and knowledge of the force re- 
quired to displace the solid equivalent yields the modulus ratio EfIE,. The 
corresponding density ratio is determined geometrically. The quality of this 
model is demonstrated in Figure 10. The predicted results ara all within 7% of 
the empirical square power relationship. 

The fact that both the two- and three-dimensional analyses predict higher 
foam stiffnesses than exist in practice at relative densities less than around 0.6 
can be explained in terms of the observed morphology of thermoplastic foams.12 
It is not unreasonable to assume that a t  higher densities the cells, which are nearly 
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Fig. 8. Comparison of two-dimensional finite element analyses. 
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Fig. 9. Approximate sphere in cube model showing “two-dimensional slice.” 

randomly centered, do not interact and can be modeled reasonably by a “sphere 
in cube” model. At lower densities there is a tendency for foams to form a 
three-dimensional network with some symmetry. The structure given by the 
“sphere in cube” model (an array of spherical holes with interleaved blocks of 
solid material continuous in the loading direction) does not exist. This effect 
was briefly investigated by a two-dimensional (plane stress) analysis of an “offset 
circular holes in square plate” model, the mesh for which is shown in Figure 11. 
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Fig. 11. Offset holes in square plate mesh. 

The predicted stiffnesses (shown in Fig. 9) were less than both those predicted 
by the “circular hole in plate” model and empirical values because the “offset 
holes” model contains less area of continuous solid material. In order to study 
low foam densities, a “cubic hole in solid cube” model was constructed from plane 
strain “square hole in square plate” slices using two-dimensional finite element 
analyses and the method described above for the “sphere in cube” model. This 
gave higher stiffness ratios than did the “sphere in cube” model since, for the 
same density, a “cube in cube” model has a greater volume of material continuous 
in the direction of loading. 

CONCLUSIONS 

Finite element analysis of a model with some physical resemblance to a real 
high-density closed-cell foam structure predicts a relationship between the 
relative modulus and relative density of foamed and solid materials similar to 
that measured experimentally. 

The deficiencies at low relative densities can be explained in terms of the 
known morphology of thermoplastic foams. 

The finite element approach gives much better agreement with practice than 
most previous theoretical models. I t  is interesting to note that the relative 
modulus-versus-density relationship obtained from the two-dimensional “cir- 
cular hole in square plate” finite element analysis corresponds almost exactly 
with that from the Mehta-Columbo model using the value 0.6 for the structural 
parameter z .  

The Lederman model gives excellent results but is of doubtful validity for high 
densities and is based on an open cell structure. For low densities, however, the 



CLOSED-CELL THERMOPLASTIC FOAMS 819 

thin “straight” walled structures of both open and closed cell foams are broadly 
similar, so that Lederman’s model may have some physical validity for low- 
density closed-cell foams. 

In practice, no theoretical model can be really valid because of the wide possible 
variations in cell size, shape, and orientation caused by the molding process. 
However, for predictive purposes it is necessary to use some generalized simple 
analysis, and experimental evidence1,2>s has shown that the square-power rela- 
tionship between relative modulus and relative density can be used with some 
confidence not only for high-density rigid closed cell foams but also for foams 
that are flexible, open cell, or of low density. 
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